Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Resonance Charging Applied to a Turbo Charged Gasoline Engine for Transient Behavior Enhancement at Low Engine Speed

2017-09-04
2017-24-0146
Upcoming regulations and new technologies are challenging the internal combustion engine and increasing the pressure on car manufacturers to further reduce powertrain emissions. Indeed, RDE pushes engineering to keep low emissions not only at the bottom left of the engine map, but in the complete range of load and engine speeds. This means for gasoline engines that the strategy used to increase the low end torque and power by moving out of lambda one conditions is no longer sustainable. For instance scavenging, which helps to increase the enthalpy of the turbine at low engine speed cannot be applied and thus leads to a reduction in low-end torque. Similarly, enrichment to keep the exhaust temperature sustainable in the exhaust tract components cannot be applied any more. The proposed study aims to provide a solution to keep the low end torque while maintaining lambda at 1. The tuning of the air intake system helps to improve the volumetric efficiency using resonance charging effects.
Technical Paper

Development of a Fast, Predictive Burn Rate Model for Gasoline-HCCI

2016-04-05
2016-01-0569
Operating gasoline engines at part load in a so-called Gasoline-HCCI (gHCCI) combustion mode has shown promising results in terms of improved efficiency and reduced emissions. So far, research has primarily been focused on experimental investigations on the test bench, whereas fast, predictive burn rate models for use in process calculation have not been available. Such a phenomenological model is henceforth presented. It describes the current burn rate as the sum of a sequential self-ignition process on the one hand and a laminar-turbulent flame propagation on the other hand. The first mechanism is essentially represented by ignition delay calculation, in which the reaction rate is computed separately for some hundred groups of different temperatures based on the Arrhenius equation. Thermal inhomogeneity is described by a contaminated normal distribution which accounts for the influence of wall temperature on mixture close to the cylinder wall.
Technical Paper

Numerical and Experimental Studies on Mixture Formation with an Outward-Opening Nozzle in a SI Engine with CNG-DI

2016-04-05
2016-01-0801
CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
Technical Paper

Potentials of Phlegmatization in Diesel Hybrid Electric Vehicles

2011-06-09
2011-37-0018
An approach for model-based control strategy design for diesel hybrid drive-trains has been developed, permitting the reduction of fuel consumption as well as of exhaust gas emissions. The control strategy consists of four core-functions: the SOC-management, the operation mode determination, the gear selection, and the thermal monitoring. Based on those different interpretations, a control strategy can be designed that leads to great reductions in fuel consumption or alternatively to a mentionable decline of nitrous oxides. In this trade-off, both aims can not be optimized at a time. Though, the strategy to be used is a compromise, designs for control strategies are possible that reduce both for a significant amount. Extending this control strategy by adding functions for transient behavior at start-up and load changes; phlegmatization enables additional potentials for emission reduction.
Technical Paper

A Way towards Remarkable Reduction of Co2-Emissions in Motorsports: The CNG-Engine

2011-06-09
2011-37-0006
Until a few years ago the discussion of reduction of CO₂ emissions was completely out of place in motorsports. Nowadays, also in this field, car manufacturers want to investigate different approaches towards a more responsible and sustainable concept. For this target an interesting and feasible solution is the use of methane as an alternative fuel. At the 2009 edition of the 24-hour endurance race of the Nürburgring the Volkswagen Motorsport GmbH, in addition to vehicles powered by gasoline engines, introduced two vehicles powered by turbocharged CNG engines. The aim was to prove that also an "environment-friendly" concept is able to provide the required efficiency, dynamic and reliability for a successful participation in motorsports. After the success in the 2009 edition the engagement has been continued in 2010; this time exclusively with CNG vehicles.
Technical Paper

Virtual Set-up of a Racing Engine for the Optimization of Lap Performance through a Comprehensive Engine-Vehicle-Driver Model

2011-09-11
2011-24-0141
In Motorsports the understanding of the real engine performance within a complete circuit lap is a crucial topic. On the basis of the telemetry data the engineers are able to monitor this performance and try to adapt the engine to the vehicle's and race track's characteristics and driver's needs. However, quite often the telemetry is the sole analysis instrument for the Engine-Vehicle-Driver (EVD) system and it has no prediction capability. The engine optimization for best lap-time or best fuel economy is therefore a topic which is not trivial to solve, without the aid of suitable, reliable and predictive engineering tools. A complete EVD model was therefore built in a GT-SUITE™ environment for a Motorsport racing car (STCC-VW-Scirocco) equipped with a Compressed Natural Gas (CNG) turbocharged S.I. engine and calibrated on the basis of telemetry and test bench data.
Technical Paper

Improvement of a High-Performance CNG-Engine Based on an innovative Virtual Development Process

2011-09-11
2011-24-0140
Methane as an alternative fuel in motorsports? Actually this solution is well known for the reduction of CO₂ emissions but apparently it does not really awake race feelings. At the 2009 edition of the 24-hour endurance race on the Nürburgring the Volkswagen Motorsport GmbH, in addition to vehicles powered by gasoline engines, introduced two vehicles powered by innovative turbo-charged CNG engines for the first time. The aim was to prove, that also an "environment-friendly" concept is able to provide the required efficiency, dynamic and reliability for a successful participation in motorsports. After the success in the 2009 edition the engagement has been continued also in 2010, this time exclusively with CNG vehicles. Focusing on the CO₂ emission, reclusively the higher hydrogen content of methane which represents the main component of NG leads to a CO₂ reduction during the combustion of about 20% compared to gasoline.
Technical Paper

Experimental Validation of a Global Reaction Model for a Range of Gasolines and Kerosenes under HCCI Conditions

2011-09-11
2011-24-0024
Compact and computationally efficient reaction models capable of accurately predicting ignition delay and heat release rates are a prerequisite for the development of strategies to control and optimize HCCI engines. In particular for full boiling range fuels exhibiting two-stage ignition a tremendous demand exists in the engine development community. To this end, in a previous investigation, a global reaction mechanism was developed and fitted to data from shock tube experiments for n-heptane and five full boiling range fuels. By means of a genetic algorithm, for each of these fuels, a set of reaction rate parameters (consisting of pre-exponential factors, activation energies and concentration exponents) has been defined, without any change to the model form.
Technical Paper

A Quasi-Dimensional Charge Motion and Turbulence Model for Diesel Engines with a Fully Variable Valve Train

2018-04-03
2018-01-0165
With the increasingly strict emission regulations and economic demands, variable valve trains are gaining in importance in Diesel engines. A valve control strategy has a great impact on the in-cylinder charge motions, turbulence level, thus also on the combustion and emission formation. In order to predict in-cylinder charge motions and turbulence properties for a working process calculation, a zero−/quasi-dimensional flow model is developed for the Diesel engines with a fully variable valve train. For the purpose of better understanding the in-cylinder flow phenomena, detailed 3D CFD simulations of intake and compression strokes are performed at different operating conditions with various piston configurations. In the course of model development, global in-cylinder charge motions are assigned to idealized flow fields. Among them, swirl flow is characterized by an engine swirl number that is determined by both developments of the swirl angular momentum and the moment of inertia.
Technical Paper

Virtual Optimization of Race Engines Through an Extended Quasi Steady State Lap Time Simulation Approach

2018-04-03
2018-01-0587
Minimizing the lap time for a given race track is the main target in racecar development. In order to achieve the highest possible performance of the vehicle configuration the mutual interaction at the level of assemblies and components requires a balance between the advantages and disadvantages for each design decision. Especially the major shift in the focus of racecar powerunit development to high efficiency powertrains is driving a development of lean boosted and rightsized engines. In terms of dynamic engine behavior the time delay from requested to provided torque could influence the lap time performance. Therefore, solely maximizing the full load behavior objective is insufficient to achieve minimal lap time. By means of continuous predictive virtual methods throughout the whole development process, the influence on lap time by dynamic power lags, e.g. caused by the boost system, can be recognized efficiently even in the early concept phase.
Technical Paper

A Two-Stage Knock Model for the Development of Future SI Engine Concepts

2018-04-03
2018-01-0855
At specific operating conditions, the auto-ignition in the unburnt mixture that precedes the occurrence of knock in conventional SI engines happens in two stages. In a previous publication, the authors demonstrated that the low-temperature heat release significantly influences the auto-ignition behavior of the mixture, thus severely impairing the prediction capabilities of the Livengood-Wu integral that the majority of the commonly used 0D/1D knock models are based on. Consequently, a new two-stage auto-ignition prediction approach for modeling the progress of the chemical reactions was introduced. It was demonstrated that the proposed auto-ignition model predicts the occurrence of two-stage ignition and accurately considers the significant influence of low-temperature heat release on the mixture’s auto-ignition behavior at various operating conditions.
Technical Paper

Reaction Kinetics Calculations and Modeling of the Laminar Flame Speeds of Gasoline Fuels

2018-04-03
2018-01-0857
In the quasi-dimensional modeling of the spark-ignition combustion process, the burn rate calculation depends, among other influences, on the laminar flame speed. Commonly used models of laminar flame speeds are usually developed on the basis of measurement data limited to boundary conditions outside of the engine operation range. This limitation is caused by flame instabilities and forces flame speed models to be extrapolated for the application in combustion process simulation. However, for the investigation of, for example, lean burn engine concepts, reliable flame speed values are needed to improve the quality and predictive ability of burn rate models. For this purpose, a reference fuel for gasoline is defined to perform reaction kinetics calculations of laminar flame speeds for a wide range of boundary conditions.
Technical Paper

Development Approach for the Investigation of Homogeneous Charge Compression Ignition in a Free-Piston Engine

2013-09-08
2013-24-0047
In this paper the development approach and the results of numerical and experimental investigations on homogeneous charge compression ignition in a free piston engine are presented. The Free Piston Linear Generator (FPLG) is a new type of internal combustion engine designed for the application in a hybrid electric vehicle. The highly integrated system consists of a two-stroke combustion unit, a linear generator, and a mass-variable gas spring. These three subsystems are arranged longitudinally in a double piston configuration. The system oscillates linearly between the combustion chamber and the gas spring, while electrical energy is extracted by the centrally arranged linear generator. The mass-variable gas spring is used as intermediate energy storage between the downstroke and upstroke. Due to this arrangement piston stroke and compression ratio are no longer determined by a mechanical system.
Technical Paper

A Detailed Reaction Kinetics-Based Calculation Tool for Internal Combustion Engine-Related Ignition Processes

2022-06-07
2022-01-5050
Ignition delay times are major information needed to allow the simulation of auto-ignition and knocking combustion in internal combustion engines (ICEs). Due to their variance over changing boundary conditions (BC) and limitations of measurement processes, a common way to obtain them is via reaction kinetic simulations. To facilitate and accelerate the simulation process with varying operating conditions and gas composition definitions, an efficient tool that uses Cantera’s Python interface has been created. It allows the end-user to easily calculate the ignition delay data needed for engine simulation without the necessity for in-depth knowledge of the underlying processes. All calculations are based on the creation of a homogeneously mixed gaseous mixture corresponding to engine-based environmental conditions. Depending on the desired fuel, oxidizer, temperature, pressure, water, and exhaust gas recirculation (EGR) rate, the resulting reactant composition is computed.
Technical Paper

Investigation on different Injection Strategies in a Direct-Injected Turbocharged CNG-Engine

2006-09-14
2006-01-3000
Natural gas as a fuel for internal combustion engines is a combustion technology showing great promise for the reduction of CO2 and particulate matter. To demonstrate the potential of natural gas direct injection, especially in combination with supercharging, some experimental investigations were carried out using a single-cylinder engine unit with lateral injector position. For this purpose different injection valve nozzles, piston crown geometries as well as operating strategies were investigated. First experimental results show that it is also possible to better support the combustion process by providing a late injection of a part of the fuel, near ignition point, so that the additional induced turbulence can speed up the flame propagation 1 Mixture formation with gaseous fuels due to its low mass density is more critical than in gasoline engines, because even high injection velocities still produce very low fuel penetration.
Technical Paper

A Downsized, Turbocharged Natural Gas SI Engine - Including Hybridization - For Minimized CO2 Emissions

2005-09-11
2005-24-026
To demonstrate the potential of a CO2-minimized propulsion concept a study of a natural-gas, micro-hybrid powertrain was carried out. The basis was built by experimental investigations of a turbocharged 1.0-l, 3-cylinder engine operated at stoichiometric and lean air/fuel ratio with EGR and an optimized combustion strategy. With the results of this study a still existing model for micro-hybrid vehicles was filled and the CO2 emissions for several concepts were calculated. It could be shown that CO2 improvements of 30 to 40% for the IC engine and up to 50% for the complete micro-hybrid propulsion system accompanied with better driveability are possible.
Technical Paper

A Simulative Study for Post Oxidation During Scavenging on Turbo Charged SI Engines

2018-04-03
2018-01-0853
Fulfilling exhaust emissions regulations and meet customer performance needs mainly drive the current engine development. Turbocharging system plays a key role for that. Currently turbocharging should provide highest engine power density at high engine speed by also allowing a very responsive performance at low end. This represents a trade-off in turbocharger development. A large scaled turbine allows having moderate exhaust gas back pressure for peak power region, but leading to loss of torque in low engine speed. In the last years of engine development scavenging helped to get away a bit from this trade-off as it increases the turbine mass flow and also reduces cylinder internal residual gas at low engine speed. The mostly in-use lean strategy runs air fuel ratios of closed to stoichiometric mixture in cylinder and global (pre catalyst) of λ = 1.05 to l = 1.3. This will be out of the narrow air fuel ratio band of λ = 1 to ensure NOx conversion in the 3-way-catalyst.
Technical Paper

Investigation on Mixture Formation and Combustion Process in a CNG-Engine by Using a Fast Response 3D-CFD-Simulation

2004-10-25
2004-01-3004
The research institute FKFS in cooperation with the IVK Universität Stuttgart has recently presented QuickSim, a 3D-CFD-tool, that works integrated into the commercial 3D-CFD-code Star-CD. QuickSim has been developed to cover a vacancy in the market of simulation programs for engine development. The code introduces a new concept in the 3D-CFD-simulation of internal combustion engines (SI-Manifold-Injection and SI-GDI), that drastically reduces the CPU-time in comparison to a conventional 3D-CFD-simulation. QuickSim, as a 3D-CFD-tool, combines the advantages of local resolution of the fluid-dynamical field of internal combustion engines exactly like that provided by traditional 3D-CFD-simulations and the versatility and clearness of the real working-process analysis (WP) and of the full 1D-flow calculations. The CPU-time always remains in an acceptable range (few hours over a full operating cycle for a single-processor computing simulation).
Technical Paper

A Model for a Fast Prediction of the In-Cylinder Residual Gas Mass

2004-10-25
2004-01-3053
The presented results are part of a research project to create a universal residual gas fraction model. It is supported by the „Forschungsvereinigung Verbrennungs-kraftmaschinen e.V. (FVV)”. In the research project an universal formula has been developed which allows the determination of the residual gas fraction in allkind of IC engines. The formula is valid for naturally aspirated engine, turbo and super charged, variable valve timing and fully variable valve trains, as well. The formula (constant approach) developed during the project is based on variables like time averaged intake and exhaust pressure, exhaust temperature and geometric engine data which were measured on the test bench. As a result, online and real time calculation is possible already while the engine is running. This implies that the formula can be used within the engine control unit for control purposes.
Technical Paper

Efficient Post-Processing Method for Identification of Local Hotspots in 3D CFD Simulations

2022-06-14
2022-37-0005
Knocking is one of today’s main limitations in the ongoing efforts to increase efficiency and reduce emissions of spark-ignition engines. Especially for synthetic fuels or any alternative fuel type in general with a much steeper increase of the knock frequency at the KLSA, such as hydrogen, precise knock prediction is crucial to exploit their full potential. This paper therefore proposes a post-processing tool enabling further investigations to continuously gain better understanding of the knocking phenomenon. In this context, evaluation of local auto-ignitions preceding knock is crucial to improve knowledge about the stochastic occurrence of knock but also identify critical engine design to further optimize the geometry. In contrast to 0D simulations, 3D CFD simulations provide the possibility to investigate local parameters in the cylinder during the combustion.
X